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ABSTRACT 

 

Mild traumatic brain injury is difficult to detect in standard 

magnetic resonance (MR) images due to the low contrast 

appearance of lesions. In this paper a discriminative 

approach is presented, using a classifier to directly 

estimates the posterior probability of lesion at every voxel 

using low-level context learned from previous classifiers. 

Both visual features including multiple texture measures, 

and context features, which include novel features such as 

proximity, directional distance, and posterior marginal edge 

distance, are used. The context is also taken from previous 

time points, so the system automatically captures the 

dynamics of the injury progression. The approach is tested 

on an mTBI rat model using MR imaging at multiple time 

points. Our results show an improved performance in both 

the dice score and convergence rate compared to other 

approaches. 

 

Index Terms— Context, Magnetic Resonance Imaging, 

Traumatic Brain injury, Low Contrast, Dynamic 

 

1. INTRODUCTION 

 

Awareness of mild traumatic brain injury (mTBI) has 

increased dramatically in recent years. Causes of mTBI 

include sports injuries, automobile accidents, blast injuries 

in the military, and falls in the workplace [1]. The long term 

effects of mTBI are just being recognized, leading to the 

need for quantitative techniques to characterize and measure 

the injured tissue. 

Clinical evaluation of mTBI has been qualitative 

relying on the Glasgow Coma Scale, to assess loss of 

consciousness, loss of memory, alteration in mental status, 

and focal neurological deficits. When imaging is used to 

assist in diagnosis, MR imaging or computed tomography 

(CT), a quantitative measurement of the size nor location of 

injury is typically obtained. The primary focus of imaging is 

only to assess for hematoma [1]. Some computational 

approaches have been proposed for quantifying lesions in 

moderate to severe TBI [2], which have high contrast, but 

these have been unsuccessful when attempting to evaluate 

the subtle MR signature of mTBI.  

Lesions caused by mTBI appear as small low contrast 

regions (Figure 1) in both T2 weighted images and T2maps. 

The T2 values within these lesions often fall within the 

range of normal tissue values. Therefore the T2 value of a 

voxel cannot be used by itself. In [3] it was shown that there 

are significant texture changes in brain tissues as a result of 

mTBI, that provides a measure of the underlying structure of 

the tissue. Therefore, our proposed approach uses multiple 

texture measures to improve the discriminative ability of 

mTBI detection from MR images.  

Multiple sclerosis (MS) shows similar low contrast 

lesions. The approaches for detecting these lesions [4,5] take 

advantage of the knowledge that MS occurs in a specific 

tissue type, which is consistently located in the same 

location. This is a type of context that is being exploited, 

more specifically anatomical context. Context is exploited 

when traditional methods for detection fail. Context can be 

defined as information that aids in detection, but does not 

directly come from an image itself. In past work [6] we have 

used a high level contextual model that simulates the 

progression of the lesion to estimate the location of mTBI 

lesions. In this paper we propose a low level (voxel level) 

contextual modeling to aid in detection of mTBI. Recently 

[7] proposed autocontext, which is a way to model context 

at the pixel level. The main premise is to estimate an object 

 
Figure 1: T2 weighted MR image from the rat model 

dataset. A) Original T2 weighted image. B) Manual 

detection of the mTBI lesion (highlighted in color). This 

shows the low contrast appearance of the lesions as a 

result of mTBI. 



with a discriminative classifier and use a sampling of the 

estimated posterior probability as additional features to a 

subsequent classifier. It is able to take information from far 

away compared to other methods like conditional random 

fields (CRF) [8] which are local. The context features in this 

case are a sparse sampling of a distant neighborhood around 

every pixel. This can lead to overfitting due to the very 

specific locations this can be seen in one of the examples in 

[7]. We adopted the idea of cascading classifiers, but 

developed features that are more generalizable and integrate 

temporal information. 

The contributions of our paper are: 1) development of 

three new contextual features to be used with a cascade of 

classifiers. These features include a proximity feature, a 

directional feature, and a maximum a posteriori edge 

distance feature. 2) Use of a temporal sequence of MR 

images to provide context from a previous time point, 

capturing the dynamics of the injury progression 

automatically. 3) Analysis of multiple contextual feature 

configurations on a rat controlled cortical impact (CCI) 

mTBI model dataset. 

 

2. TECHNICAL RATIONALE 

 

A discriminative approach is taken where classifiers are 

used to directly estimate the posterior probability of lesion 

and non-lesion voxels. The ground-truth for training the 

classifiers is obtained from manual segmentation. A cascade 

of classifiers is used for estimating the detected lesion at 

each time point. The first classifier in the cascade estimates 

the lesion using only the visual features. Then context 

features are made from the posterior probability map 

estimated by the classifier. These features are recalculated 

for each iteration in the process, for a given number of 

classifiers as shown in Figure 2. The first classifiers of the 

second time point, uses contextual features generated by the 

final classifier in the previous time point. 

  

2.1 Visual Features 

Due to the low contrast nature of the unimodal MR images 

and the mild nature of the TBI, texture features are used to 

increase discrimination. Four types of texture features are 

used: uniform local binary pattern (LBP) [9] in the coronal 

plane (59 features), statistical features (mean, variance, 

skewness, kurtosis) of a Gabor filter bank with 8 

orientations and 4 scales in the coronal plane (128 features), 

basic histogram of oriented gradients in the coronal plane 

[10] (9 features), and basic neighborhood statistical features 

(mean, variance, skewness, kurtosis, range, entropy, 

gradient magnitude xyz) (9 features). This gives a total of 

205 visual features. This wide variety of features provides 

many different characteristics without being too specific 

(i.e., they will generalize well). The classifier we have 

chosen, adaboost [11], inherently does feature selection. 

 

2.2 Contextual Features 

 

The contextual features come from the posterior probability 

estimated by an already learned classifier. Previous 

approaches [7] have directly sampled a dense neighborhood 

around an observed voxel, making each location a potential 

feature. This method can lead to large feature sizes and can 

cause overfitting due to the specific locations that are 

learned. In this paper, two new features are proposed to 

overcome this problem. One incorporates a sense of the 

surrounding without a known direction, while the other 

gives a general sense of direction.    

The first feature, shown in Figure 3A, gives the average 

posterior probability at various distances around the 

observed voxel. This can be thought of as what is a close, 

medium and far  away in distance. The distance function 

used here is the Manhattan distance allowing for a cuboidal 

region. These features are directionally invariant and can 

 
Figure 2: Overview of the proposed system. Context 

information is sent from one classifier to the next. 

 
Figure 3: A) Illustration of the proximity feature. V is the 

observed voxel and the feature is the average probability 

of the regions (R1, R2, R3). B) Illustration of the distance 

features. V is the observed voxel and an example feature 

is the average probability between P1 and P2 along the 

45° ray. 



lead to better generalization since they describe a general 

area. By having a nesting of boxes the integral image can be 

utilized for quick computation of the features. In 3D only 8 

point are needed to find the average of a cuboidal region, 

using integral images [12]. Equation 1 provides these 

features, where      is the proximity feature and 

             are square neighborhoods around the voxel at 

xyz. 
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Directional information is important for classification 

since the objects are rigidly registered. The second 

contextual feature describes the posterior probability in 

various directions from the observed voxel. Rays are 

sampled at various distance ranges and angles from the 

observed voxel (see Figure 3B). From the distance ranges 

along the rays the mean is calculated. This gives a refined 

sense of the surrounding. An example would be what is 

close and above the observed voxel. The integral image can 

also be used to calculate these features. Both features can be 

used at coarse or fine distance bins without a significant 

increase in computational time. 

The posterior marginal edge distance (PMED) feature is 

the distance a voxel is from the perimeter of objects of a 

class found by the maximum posterior marginal (MPM) 

estimate. To create this feature first the MPM at a voxel is 

obtained from a classifier. This gives a binary image for 

each class. The distance transform is applied to the image 

and the inverse image and the feature is given by equation 2. 
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Here d() is the distance transform. This gives an image 

that is increasing as the voxels become farther away from 

the edge and smaller (more negative) as the voxels get 

further into the object. Where ω is the estimated class, c is a 

specific class (lesion or normal brain in our case), and f is 

the features at a given voxel (see Figure 4). 

 

2.3 Classifier 

 

The classifier being used is adaboost [11] with small 

decision trees as base classifiers. Using small trees as a 

weak classifier ( ()) allows for inherent feature selection, 

mean erroneous features are disregarded. In each iteration 

(t), the best classifier is selected and weighted with α. 

During the training process a cost matrix is used, such that 

the priors are offset to be even. This is done to account for 

the large disparity between the classes. It has been shown 

that the posterior marginal can be estimated using logistic 

regression [7] (equation 4). An example of the training 

process is shown in Figure 5. 
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3. EXPERIMENTAL RESULTS 

 

3.1 Dataset 

 

Sprague Dawley rats were used as an animal model of mTBI 

using single impact controlled cortical impact (CCI). The 

animals were imaged at 3 time points post injury: acute 

 
Figure 4: A) Example MAP estimate. B) Corresponding 

MAPED feature. Note that the values become more 

negative towards the center of the object and more 

positive farther away from the object. 

 
Figure 5: Example probability maps after each classifier. 

A) T2 MRI. B-E) Classifier output probability map for 

the training of classifier 1-4 respectively. (F) Manual 

Segmentation where yellow denotes the lesion. This 

shows the convergence of the algorithm to the manually 

segmented injury. 



(1
st
day), sub-acute (8

th
 day), and chronic (14

th
 day). There 

are a total of 6 sequences (each with 3 time points). MRI 

data were acquired using a Bruker Advance 4.7T for T2 

weighted images (T2WI; TR/TE/FA=3453 ms/20 ms/20°, 

25x1 mm slices) with a 256x256 matrix and 3cm field of 

view. The images were converted to T2 maps. ROIs were 

manually segmented using Cheshire image processing 

software (Hayden Image/Processing Group, Waltham, MA) 

and included the right and left hemispheres and  injured  

tissue volumes that were defined as abnormal (hyper/hypo-

intense) signal intensities within the cortex with the 

remaining tissues designated as normal appearing brain 

matter. 

 

3.2 Comparison of Features 

 

Here the effect of the proposed features and effect of the 

dynamic information is examined. For the training/testing 

split leave-one-out validation is used where a whole 

sequence is left out (resulting in 6 folds). The parameters 

used were: 300 weak learners, learning rate 1, and 4 

cascaded classifiers. Three approaches were tested: the 

original autocontext features [7], the proposed approach 

with only the new features (Proposed Static), and the 

proposed approach with the new features and the dynamic 

information (Proposed Dynamic). 

From Figure 6 it is clear that the proposed dynamic 

approach outperforms the other methods. This shows it is 

important to use the dynamic information. The original 

autocontext tends to over fit due the specific locations the 

features represent. During the training phase it obtains a dice 

score above 0.9, but it does not generalize to the testing 

data. The proposed approach has a very flat dice curve, so it 

is not sensitive to a chosen threshold. This makes the 

selection of a threshold less critical. From the qualitative 

results (Figure 7) it is clear that the results of proposed 

dynamic approach work on small to medium size lesions 

and false positive are only close to the majority of the 

lesion. 

 

4. CONCLUSIONS 

 

A fully automated method of detecting lesions from a mTBI 

that integrates low-level dynamic context is proposed. Three 

new features are proposed that describe the posterior 

probability of classifier outputs in a cascade. These feature 

were shown the have good qualitative and quantitative 

results. The proposed approach outperformed the original 

autocontext [7], by being able to generalize. This approach 

performed well on a small training set, with a larger training 

set this method performance should increase further. 
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